Modulation of Presynaptic Release Probability by the Vertebrate-Specific Protein Mover

نویسندگان

  • Christoph Körber
  • Heinz Horstmann
  • Varun Venkataramani
  • Frank Herrmannsdörfer
  • Thomas Kremer
  • Michaela Kaiser
  • Darius B. Schwenger
  • Saheeb Ahmed
  • Camin Dean
  • Thomas Dresbach
  • Thomas Kuner
چکیده

Mover, a member of the exquisitely small group of vertebrate-specific presynaptic proteins, has been discovered as an interaction partner of the scaffolding protein Bassoon, yet its function has not been elucidated. We used adeno-associated virus (AAV)-mediated shRNA expression to knock down Mover in the calyx of Held in vivo. Although spontaneous synaptic transmission remained unaffected, we found a strong increase of the evoked EPSC amplitude. The size of the readily releasable pool was unaltered, but short-term depression was accelerated and enhanced, consistent with an increase in release probability after Mover knockdown. This increase in release probability was not caused by alterations in Ca(2+) influx but rather by a higher Ca(2+) sensitivity of the release machinery, as demonstrated by presynaptic Ca(2+) uncaging. We therefore conclude that Mover expression in certain subsets of synapses negatively regulates synaptic release probability, constituting a novel mechanism to tune synaptic transmission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mover Is a Homomeric Phospho-Protein Present on Synaptic Vesicles

With remarkably few exceptions, the molecules mediating synaptic vesicle exocytosis at active zones are structurally and functionally conserved between vertebrates and invertebrates. Mover was found in a yeast-2-hybrid assay using the vertebrate-specific active zone scaffolding protein bassoon as a bait. Peptides of Mover have been reported in proteomics screens for self-interacting proteins, p...

متن کامل

Biphasic modulation of GABA release from stellate cells by glutamatergic receptor subtypes.

The release of inhibitory transmitters from CNS neurons can be modulated by ionotropic glutamate receptors that are present in the presynaptic terminals. In the cerebellum, glutamate released from climbing fibers (but not from parallel fibers) activates presynaptic AMPA receptors and suppresses the release of the inhibitory transmitter GABA from basket cells onto postsynaptic Purkinje cells. Th...

متن کامل

Presynaptic Deletion of GIT Proteins Results in Increased Synaptic Strength at a Mammalian Central Synapse

A cytomatrix of proteins at the presynaptic active zone (CAZ) controls the strength and speed of neurotransmitter release at synapses in response to action potentials. However, the functional role of many CAZ proteins and their respective isoforms remains unresolved. Here, we demonstrate that presynaptic deletion of the two G protein-coupled receptor kinase-interacting proteins (GITs), GIT1 and...

متن کامل

Presynaptic Cell Dependent Modulation of Inhibition in Cortical Regions

Several lines of evidence suggest that the modulation of presynaptic GABA release is mediated by a variety of receptors including; presynaptic AMPA, cannabinoid, GABA(B), kainate, metabotropic glutamate, NMDA, and opioid receptors. The evidence supporting presynaptic modulation of inhibition is predominantly obtained from studying stimulus elicited, spontaneous or miniature synaptic events, whe...

متن کامل

Dynamic modulation of phasic and asynchronous glutamate release in hippocampal synapses.

Although frequency-dependent short-term presynaptic plasticity has been of long-standing interest, most studies have emphasized modulation of the synchronous, phasic component of transmitter release, most evident with a single or a few presynaptic stimuli. Asynchronous transmitter release, vesicle fusion not closely time locked to presynaptic action potentials, can also be prominent under certa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2015